Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural and kinetic basis for substrate selectivity in Populus tremuloides sinapyl alcohol dehydrogenase.

Identifieur interne : 003F49 ( Main/Exploration ); précédent : 003F48; suivant : 003F50

Structural and kinetic basis for substrate selectivity in Populus tremuloides sinapyl alcohol dehydrogenase.

Auteurs : Erin K. Bomati [États-Unis] ; Joseph P. Noel

Source :

RBID : pubmed:15829607

Descripteurs français

English descriptors

Abstract

We describe the three-dimensional structure of sinapyl alcohol dehydrogenase (SAD) from Populus tremuloides (aspen), a member of the NADP(H)-dependent dehydrogenase family that catalyzes the last reductive step in the formation of monolignols. The active site topology revealed by the crystal structure substantiates kinetic results indicating that SAD maintains highest specificity for the substrate sinapaldehyde. We also report substantial substrate inhibition kinetics for the SAD-catalyzed reduction of hydroxycinnamaldehydes. Although SAD and classical cinnamyl alcohol dehydrogenases (CADs) catalyze the same reaction and share some sequence identity, the active site topology of SAD is strikingly different from that predicted for classical CADs. Kinetic analyses of wild-type SAD and several active site mutants demonstrate the complexity of defining determinants of substrate specificity in these enzymes. These results, along with a phylogenetic analysis, support the inclusion of SAD in a plant alcohol dehydrogenase subfamily that includes cinnamaldehyde and benzaldehyde dehydrogenases. We used the SAD three-dimensional structure to model several of these SAD-like enzymes, and although their active site topologies largely mirror that of SAD, we describe a correlation between substrate specificity and amino acid substitution patterns in their active sites. The SAD structure thus provides a framework for understanding substrate specificity in this family of enzymes and for engineering new enzyme specificities.

DOI: 10.1105/tpc.104.029983
PubMed: 15829607
PubMed Central: PMC1091777


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural and kinetic basis for substrate selectivity in Populus tremuloides sinapyl alcohol dehydrogenase.</title>
<author>
<name sortKey="Bomati, Erin K" sort="Bomati, Erin K" uniqKey="Bomati E" first="Erin K" last="Bomati">Erin K. Bomati</name>
<affiliation wicri:level="1">
<nlm:affiliation>Jack Skirball Chemical Biology and Proteomics Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Jack Skirball Chemical Biology and Proteomics Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037</wicri:regionArea>
<wicri:noRegion>California 92037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Noel, Joseph P" sort="Noel, Joseph P" uniqKey="Noel J" first="Joseph P" last="Noel">Joseph P. Noel</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15829607</idno>
<idno type="pmid">15829607</idno>
<idno type="doi">10.1105/tpc.104.029983</idno>
<idno type="pmc">PMC1091777</idno>
<idno type="wicri:Area/Main/Corpus">004082</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004082</idno>
<idno type="wicri:Area/Main/Curation">004082</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004082</idno>
<idno type="wicri:Area/Main/Exploration">004082</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural and kinetic basis for substrate selectivity in Populus tremuloides sinapyl alcohol dehydrogenase.</title>
<author>
<name sortKey="Bomati, Erin K" sort="Bomati, Erin K" uniqKey="Bomati E" first="Erin K" last="Bomati">Erin K. Bomati</name>
<affiliation wicri:level="1">
<nlm:affiliation>Jack Skirball Chemical Biology and Proteomics Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Jack Skirball Chemical Biology and Proteomics Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037</wicri:regionArea>
<wicri:noRegion>California 92037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Noel, Joseph P" sort="Noel, Joseph P" uniqKey="Noel J" first="Joseph P" last="Noel">Joseph P. Noel</name>
</author>
</analytic>
<series>
<title level="j">The Plant cell</title>
<idno type="ISSN">1040-4651</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acrolein (analogs & derivatives)</term>
<term>Acrolein (metabolism)</term>
<term>Alcohol Dehydrogenase (chemistry)</term>
<term>Alcohol Dehydrogenase (isolation & purification)</term>
<term>Alcohol Dehydrogenase (metabolism)</term>
<term>Alcohol Oxidoreductases (metabolism)</term>
<term>Binding Sites (physiology)</term>
<term>Crystallography, X-Ray (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Lignin (biosynthesis)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Molecular Structure (MeSH)</term>
<term>NADP (metabolism)</term>
<term>Populus (chemistry)</term>
<term>Populus (enzymology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acroléine (analogues et dérivés)</term>
<term>Acroléine (métabolisme)</term>
<term>Alcohol dehydrogenase (composition chimique)</term>
<term>Alcohol dehydrogenase (isolement et purification)</term>
<term>Alcohol dehydrogenase (métabolisme)</term>
<term>Alcohol oxidoreductases (métabolisme)</term>
<term>Cinétique (MeSH)</term>
<term>Cristallographie aux rayons X (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Lignine (biosynthèse)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>NADP (métabolisme)</term>
<term>Populus (composition chimique)</term>
<term>Populus (enzymologie)</term>
<term>Sites de fixation (physiologie)</term>
<term>Structure moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Acrolein</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Alcohol Dehydrogenase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Alcohol Dehydrogenase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acrolein</term>
<term>Alcohol Dehydrogenase</term>
<term>Alcohol Oxidoreductases</term>
<term>NADP</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Acroléine</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Lignine</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Alcohol dehydrogenase</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Alcohol dehydrogenase</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acroléine</term>
<term>Alcohol dehydrogenase</term>
<term>Alcohol oxidoreductases</term>
<term>NADP</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Sites de fixation</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Binding Sites</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Crystallography, X-Ray</term>
<term>Kinetics</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Molecular Structure</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Cristallographie aux rayons X</term>
<term>Données de séquences moléculaires</term>
<term>Modèles moléculaires</term>
<term>Structure moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We describe the three-dimensional structure of sinapyl alcohol dehydrogenase (SAD) from Populus tremuloides (aspen), a member of the NADP(H)-dependent dehydrogenase family that catalyzes the last reductive step in the formation of monolignols. The active site topology revealed by the crystal structure substantiates kinetic results indicating that SAD maintains highest specificity for the substrate sinapaldehyde. We also report substantial substrate inhibition kinetics for the SAD-catalyzed reduction of hydroxycinnamaldehydes. Although SAD and classical cinnamyl alcohol dehydrogenases (CADs) catalyze the same reaction and share some sequence identity, the active site topology of SAD is strikingly different from that predicted for classical CADs. Kinetic analyses of wild-type SAD and several active site mutants demonstrate the complexity of defining determinants of substrate specificity in these enzymes. These results, along with a phylogenetic analysis, support the inclusion of SAD in a plant alcohol dehydrogenase subfamily that includes cinnamaldehyde and benzaldehyde dehydrogenases. We used the SAD three-dimensional structure to model several of these SAD-like enzymes, and although their active site topologies largely mirror that of SAD, we describe a correlation between substrate specificity and amino acid substitution patterns in their active sites. The SAD structure thus provides a framework for understanding substrate specificity in this family of enzymes and for engineering new enzyme specificities.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15829607</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>01</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1040-4651</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>17</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2005</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>The Plant cell</Title>
<ISOAbbreviation>Plant Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural and kinetic basis for substrate selectivity in Populus tremuloides sinapyl alcohol dehydrogenase.</ArticleTitle>
<Pagination>
<MedlinePgn>1598-611</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>We describe the three-dimensional structure of sinapyl alcohol dehydrogenase (SAD) from Populus tremuloides (aspen), a member of the NADP(H)-dependent dehydrogenase family that catalyzes the last reductive step in the formation of monolignols. The active site topology revealed by the crystal structure substantiates kinetic results indicating that SAD maintains highest specificity for the substrate sinapaldehyde. We also report substantial substrate inhibition kinetics for the SAD-catalyzed reduction of hydroxycinnamaldehydes. Although SAD and classical cinnamyl alcohol dehydrogenases (CADs) catalyze the same reaction and share some sequence identity, the active site topology of SAD is strikingly different from that predicted for classical CADs. Kinetic analyses of wild-type SAD and several active site mutants demonstrate the complexity of defining determinants of substrate specificity in these enzymes. These results, along with a phylogenetic analysis, support the inclusion of SAD in a plant alcohol dehydrogenase subfamily that includes cinnamaldehyde and benzaldehyde dehydrogenases. We used the SAD three-dimensional structure to model several of these SAD-like enzymes, and although their active site topologies largely mirror that of SAD, we describe a correlation between substrate specificity and amino acid substitution patterns in their active sites. The SAD structure thus provides a framework for understanding substrate specificity in this family of enzymes and for engineering new enzyme specificities.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bomati</LastName>
<ForeName>Erin K</ForeName>
<Initials>EK</Initials>
<AffiliationInfo>
<Affiliation>Jack Skirball Chemical Biology and Proteomics Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Noel</LastName>
<ForeName>Joseph P</ForeName>
<Initials>JP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AAK58693</AccessionNumber>
<AccessionNumber>AF320110</AccessionNumber>
<AccessionNumber>CAA48028</AccessionNumber>
<AccessionNumber>P31655</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>04</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell</MedlineTA>
<NlmUniqueID>9208688</NlmUniqueID>
<ISSNLinking>1040-4651</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>4206-58-0</RegistryNumber>
<NameOfSubstance UI="C075386">sinapaldehyde</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53-59-8</RegistryNumber>
<NameOfSubstance UI="D009249">NADP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7864XYD3JJ</RegistryNumber>
<NameOfSubstance UI="D000171">Acrolein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.-</RegistryNumber>
<NameOfSubstance UI="D000429">Alcohol Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.1.1</RegistryNumber>
<NameOfSubstance UI="D000426">Alcohol Dehydrogenase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.1.195</RegistryNumber>
<NameOfSubstance UI="C018656">cinnamyl alcohol dehydrogenase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000171" MajorTopicYN="N">Acrolein</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000426" MajorTopicYN="N">Alcohol Dehydrogenase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000429" MajorTopicYN="N">Alcohol Oxidoreductases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015394" MajorTopicYN="N">Molecular Structure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009249" MajorTopicYN="N">NADP</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>1</Month>
<Day>7</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15829607</ArticleId>
<ArticleId IdType="pii">tpc.104.029983</ArticleId>
<ArticleId IdType="doi">10.1105/tpc.104.029983</ArticleId>
<ArticleId IdType="pmc">PMC1091777</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1999 Apr;55(Pt 4):849-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10089316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 Sep;41(2):279-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10579494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2000 Aug;56(Pt 8):965-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10944333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):14199-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Feb 16;306(2):239-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11237597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2001 May 15;356(Pt 1):269-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11336660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Jul;13(7):1567-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11449052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1990;41:455-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11543592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jun;14(6):1265-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12084826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Aug;53(375):1723-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12147722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2003 Aug;270(16):3309-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12899689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1992 Nov 20;228(2):662-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1453469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Nov;133(3):1051-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14612585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1455-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14745009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Aug 20;341(4):1049-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15289102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Mar;137(3):1009-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15734921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr A. 1991 Mar 1;47 ( Pt 2):110-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2025413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-326</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27799103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1973 May 15;76(2):241-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4737475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1979 Jul;97(2):503-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">572771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Sep 26;34(38):12426-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7547988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1994 Nov 15;226(1):15-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7957243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1993 Sep 3;1202(1):61-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8373826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1993 Mar;21(6):1085-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8490129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1996 Dec 16;399(3):193-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8985143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1996 Dec;8(4):477-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9008363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1997 Apr 4;267(3):727-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9126849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 1997 Aug;378(8):909-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9377488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9757107</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Noel, Joseph P" sort="Noel, Joseph P" uniqKey="Noel J" first="Joseph P" last="Noel">Joseph P. Noel</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Bomati, Erin K" sort="Bomati, Erin K" uniqKey="Bomati E" first="Erin K" last="Bomati">Erin K. Bomati</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003F49 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003F49 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15829607
   |texte=   Structural and kinetic basis for substrate selectivity in Populus tremuloides sinapyl alcohol dehydrogenase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15829607" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020